M. Parsons, M. Thomas, R. Norris
Cooperative Research Centre for Freshwater Ecology
Monitoring River Health Initiative Technical Report Number 21
Environment Australia, 2002
ISSN 1447 1280
ISBN 0 642 54887 0
The State of the Rivers Survey was developed in Queensland, in response to a need for detailed information on the physical and environmental condition of streams and rivers (Anderson, 1993a). This information would then be available to the Queensland Department of Primary Industries (DPI) for use in the Integrated Catchment Management process (Anderson, 1993a). The State of the Rivers Survey is not designed to establish the trend or rate of change of stream condition, but rather, it provides a 'snapshot' of the physical and environmental condition of streams. These data can then be used to:
The State of the Rivers Survey was developed in two stages. The first stage involved development (Anderson, 1993a; Anderson, 1993b) and testing (Anderson, 1993c) of the method. The State of the Rivers Survey has subsequently been applied to assess stream condition in 26 catchments in New South Wales and Queensland (Anderson, 1999).
The State of the Rivers Survey methodology aims to assess the condition of homogenous stream sections within catchments (Anderson, 1993a). The use of homogeneous stream sections facilitates comparison of similar stream types among catchments or sub-catchments, and provides an ability to distinguish inherent natural variability from the effects of human impacts. Division of the catchment into homogeneous stream sections is a hierarchical process that involves the following steps:
Within each stream segment, a representative sampling reach is chosen on the basis of the following criteria:
The number of reaches sampled within each catchment varies according to the size of the catchment and the required resolution of the survey (Anderson, 1993a).
Sub-section elements1
Hydrology2
Site description
Reach environs - temporal and spatial
Channel habitat
Cross-sections4 |
Bank condition
Bed and bar condition
Vegetation
Aquatic habitat
Scenic, recreational and conservation values
|
1 This component is usually completed post-survey, to characterise the final homogeneous stream sections
2 This component is desk based and is designed to establish an interface with hydrological and water quality data through HYDSYS
3 Measurement of depth, water temperature, dissolved oxygen, pH, conductivity, salinity, turbidity, secchi depth and water velocity is optional
4 One cross section is measured in each habitat type present within a reach
5 Measured at up to 15 locations within the cross sectional transect
6 Measured for left and right banks
In addition to the map-based data that are used to delineate the initial stream sections, the State of the Rivers Survey consists of 11 data components (Table 2.6.1) that are collected at each representative sampling reach. Each data component is composed of different types of variables that represent the physical and environmental aspects of the stream channel (Table 2.6.1). Variables are generally measured using visual estimation, but some variables require physical measurement or an interpretive rating of condition.
The basis for assessment of stream condition in the State of the Rivers Survey is 'the extent to which the values or perceived function of an attribute has declined from a pristine or undisturbed condition' (Anderson, 1999). A series of condition ratings are produced for each data component. Formulas are used to derive condition ratings, using subsets of variables collected within each component (Anderson 1993b). These condition ratings are based on the extent of degradation from a theoretical maximum of 100%, where 100% percent represents the full value, pristine condition or complete function for the component and 0% represents a complete loss of these (Anderson, 1999). Comparisons with representative sites in good condition are also used to scale the ratings (Anderson, 1999).
Using the condition ratings for each data component, an assessment of condition is derived for each homogeneous stream section (Figure 2.6.1). A final assessment of stream condition within a catchment is achieved by calculating the number of homogeneous stream sections that correspond to each condition rating, for each data component (Figure 2.6.1). The length of stream within each catchment that corresponds to a certain condition can also be calculated (Figure 2.6.1). In addition, an overall condition rating can also be calculated for the whole catchment by resetting the condition ratings for all the data components combined (Anderson, 1993c). Thus, stream condition can be reported on several levels of resolution that can encompass combinations of individual data components or all data components together, as well as individual stream sections or the entire catchment.
The State of the Rivers Survey was designed to 'estimate the ecological condition [of rivers] in terms of the condition of the instream habitat, rather than by conducting flora or faunal surveys' (Anderson, 1993a, p6). As such, the State of the Rivers Survey primarily makes a detailed assessment of components that describe the physical condition of streams, such as channel habitat, bed condition, bank condition, cross-sectional dimension and riparian vegetation (Table 2.6.1). Anderson (1993a) recognised that habitat attributes of general importance to the biota were encompassed by these components. Many of the variables measured in the State of the Rivers Survey correspond with those measured in AusRivAS (see Section 2.2), RHS (see Section 2.8) and Habitat Predictive Modelling (see Section 2.7). Therefore, many of the empirical links between biota and habitat that are encompassed within other methods, are potentially represented by the variables collected in the State of the Rivers Survey.